The visual dimension of cities has been a fundamental subject in urban studies, since the pioneering work of scholars such as Sitte, Lynch, Arnheim, and Jacobs. Several decades later, big data and artificial intelligence (AI) are revolutionizing how people move, sense, and interact with cities. This paper reviews the literature on the appearance and function of cities to illustrate how visual information has been used to understand them. A conceptual framework, Urban Visual Intelligence, is introduced to systematically elaborate on how new image data sources and AI techniques are reshaping the way researchers perceive and measure cities, enabling the study of the physical environment and its interactions with socioeconomic environments at various scales. The paper argues that these new approaches enable researchers to revisit the classic urban theories and themes, and potentially help cities create environments that are more in line with human behaviors and aspirations in the digital age.
translated by 谷歌翻译
Real-world robotic grasping can be done robustly if a complete 3D Point Cloud Data (PCD) of an object is available. However, in practice, PCDs are often incomplete when objects are viewed from few and sparse viewpoints before the grasping action, leading to the generation of wrong or inaccurate grasp poses. We propose a novel grasping strategy, named 3DSGrasp, that predicts the missing geometry from the partial PCD to produce reliable grasp poses. Our proposed PCD completion network is a Transformer-based encoder-decoder network with an Offset-Attention layer. Our network is inherently invariant to the object pose and point's permutation, which generates PCDs that are geometrically consistent and completed properly. Experiments on a wide range of partial PCD show that 3DSGrasp outperforms the best state-of-the-art method on PCD completion tasks and largely improves the grasping success rate in real-world scenarios. The code and dataset will be made available upon acceptance.
translated by 谷歌翻译
There has been significant work recently in developing machine learning models in high energy physics (HEP), for tasks such as classification, simulation, and anomaly detection. Typically, these models are adapted from those designed for datasets in computer vision or natural language processing without necessarily incorporating inductive biases suited to HEP data, such as respecting its inherent symmetries. Such inductive biases can make the model more performant and interpretable, and reduce the amount of training data needed. To that end, we develop the Lorentz group autoencoder (LGAE), an autoencoder model equivariant with respect to the proper, orthochronous Lorentz group $\mathrm{SO}^+(3,1)$, with a latent space living in the representations of the group. We present our architecture and several experimental results on jets at the LHC and find it significantly outperforms a non-Lorentz-equivariant graph neural network baseline on compression and reconstruction, and anomaly detection. We also demonstrate the advantage of such an equivariant model in analyzing the latent space of the autoencoder, which can have a significant impact on the explainability of anomalies found by such black-box machine learning models.
translated by 谷歌翻译
This chapter sheds light on the synaptic organization of the brain from the perspective of computational neuroscience. It provides an introductory overview on how to account for empirical data in mathematical models, implement them in software, and perform simulations reflecting experiments. This path is demonstrated with respect to four key aspects of synaptic signaling: the connectivity of brain networks, synaptic transmission, synaptic plasticity, and the heterogeneity across synapses. Each step and aspect of the modeling and simulation workflow comes with its own challenges and pitfalls, which are highlighted and addressed in detail.
translated by 谷歌翻译
The findable, accessible, interoperable, and reusable (FAIR) data principles have provided a framework for examining, evaluating, and improving how we share data with the aim of facilitating scientific discovery. Efforts have been made to generalize these principles to research software and other digital products. Artificial intelligence (AI) models -- algorithms that have been trained on data rather than explicitly programmed -- are an important target for this because of the ever-increasing pace with which AI is transforming scientific and engineering domains. In this paper, we propose a practical definition of FAIR principles for AI models and create a FAIR AI project template that promotes adherence to these principles. We demonstrate how to implement these principles using a concrete example from experimental high energy physics: a graph neural network for identifying Higgs bosons decaying to bottom quarks. We study the robustness of these FAIR AI models and their portability across hardware architectures and software frameworks, and report new insights on the interpretability of AI predictions by studying the interplay between FAIR datasets and AI models. Enabled by publishing FAIR AI models, these studies pave the way toward reliable and automated AI-driven scientific discovery.
translated by 谷歌翻译
Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.
translated by 谷歌翻译
Evaluating new techniques on realistic datasets plays a crucial role in the development of ML research and its broader adoption by practitioners. In recent years, there has been a significant increase of publicly available unstructured data resources for computer vision and NLP tasks. However, tabular data -- which is prevalent in many high-stakes domains -- has been lagging behind. To bridge this gap, we present Bank Account Fraud (BAF), the first publicly available privacy-preserving, large-scale, realistic suite of tabular datasets. The suite was generated by applying state-of-the-art tabular data generation techniques on an anonymized,real-world bank account opening fraud detection dataset. This setting carries a set of challenges that are commonplace in real-world applications, including temporal dynamics and significant class imbalance. Additionally, to allow practitioners to stress test both performance and fairness of ML methods, each dataset variant of BAF contains specific types of data bias. With this resource, we aim to provide the research community with a more realistic, complete, and robust test bed to evaluate novel and existing methods.
translated by 谷歌翻译
Besides accuracy, recent studies on machine learning models have been addressing the question on how the obtained results can be interpreted. Indeed, while complex machine learning models are able to provide very good results in terms of accuracy even in challenging applications, it is difficult to interpret them. Aiming at providing some interpretability for such models, one of the most famous methods, called SHAP, borrows the Shapley value concept from game theory in order to locally explain the predicted outcome of an instance of interest. As the SHAP values calculation needs previous computations on all possible coalitions of attributes, its computational cost can be very high. Therefore, a SHAP-based method called Kernel SHAP adopts an efficient strategy that approximate such values with less computational effort. In this paper, we also address local interpretability in machine learning based on Shapley values. Firstly, we provide a straightforward formulation of a SHAP-based method for local interpretability by using the Choquet integral, which leads to both Shapley values and Shapley interaction indices. Moreover, we also adopt the concept of $k$-additive games from game theory, which contributes to reduce the computational effort when estimating the SHAP values. The obtained results attest that our proposal needs less computations on coalitions of attributes to approximate the SHAP values.
translated by 谷歌翻译
In peer review systems, reviewers are often asked to evaluate various features of submissions, such as technical quality or novelty. A score is given to each of the predefined features and based on these the reviewer has to provide an overall quantitative recommendation. However, reviewers differ in how much they value different features. It may be assumed that each reviewer has her own mapping from a set of criteria scores (score vectors) to a recommendation, and that different reviewers have different mappings in mind. Recently, Noothigattu, Shah and Procaccia introduced a novel framework for obtaining an aggregated mapping by means of Empirical Risk Minimization based on $L(p,q)$ loss functions, and studied its axiomatic properties in the sense of social choice theory. We provide a body of new results about this framework. On the one hand we study a trade-off between strategy-proofness and the ability of the method to properly capture agreements of the majority of reviewers. On the other hand, we show that dropping a certain unrealistic assumption makes the previously reported results to be no longer valid. Moreover, in the general case, strategy-proofness fails dramatically in the sense that a reviewer is able to make significant changes to the solution in her favor by arbitrarily small changes to their true beliefs. In particular, no approximate version of strategy-proofness is possible in this general setting since the method is not even continuous w.r.t. the data. Finally we propose a modified aggregation algorithm which is continuous and show that it has good axiomatic properties.
translated by 谷歌翻译
隐肌和数字水印是隐藏图像像素中可回收数据的任务。基于深神经网络(DNN)的图像隐肌和水印技术正在迅速取代传统的手工工程管道。基于DNN的水印技术已大大提高了嵌入式水印的消息能力,不可识别性和鲁棒性。但是,这种改进是以水印编码器神经网络的计算开销增加为代价的。在这项工作中,我们设计了第一个加速器平台FastStamp,用于执行基于DNN的密封造影和硬件图像的数字水印。我们首先提出了一个参数有效的DNN模型,用于嵌入图像像素中的可回收位串。我们提出的模型可以与先前最新DNN的水印方法的成功指标相匹配,同时在记忆足迹方面的速度明显更快,更轻。然后,我们设计了一个基于FPGA的加速器框架,以通过利用数据并行性和自定义计算路径来进一步改善模型吞吐量和功耗。 FastStamp允许将硬件签名嵌入图像中,以建立媒体真实性和数字媒体的所有权。与先前基于DNN的水印编码器实施同时消耗更少的功率的GPU实现相比,我们的最佳设计的推断速度更快68倍。
translated by 谷歌翻译